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Abstract

The 87 year period from the end of the Great Depression to the start of the COVID-19 

pandemic exhibited relatively stable economic growth in the United States, providing a useful 

laboratory for studying behavior of U.S. equities markets. This research used perturbation 

analysis to develop a framework for modeling the behavior of the Dow Jones Industrial Average 

from April of 1934 through December of 2019. The theoretical framework consisted of an 

exponential growth component representing growth of the underlying economy as predicted by 

the efficient market hypothesis (EMH) combined with a chaotic perturbation component 

modeled as signals from an ensemble of phase-shift oscillators operating at closely spaced 

frequencies. Analysis of historical data showed that during the period of interest an exponential 

component with amplitude coefficient of 0.258 with an exponent of 0.04876 (R2 = 0.9855) plus a 

chaotic component consisting of an ensemble of 11,445 oscillators correctly modeled DJIA 

market-price activity. Normalized chaotic oscillations showed an RMS amplitude close to one 

third of the exponential growth component (standard deviation equal to 0.3325). The 

oscillations’ power spectrum was a fractal following Zipf’s Law with a -1.832 exponent (R2 = 

0.6684).

Keywords: efficient markets, EMH, Dow Jones Industrial Average, DJIA, gross domestic 

product, GDP, perturbation analysis, chaos, control theory, oscillation, investment decision, buy-

sell-hold strategy, Fourier analysis
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Efficient Markets and Chaos: A Perturbation Approach

Since Hayek (1945) suggested a mechanism by which free markets set prices for goods 

and services as a group consensus seeking an equilibrium price, scholars have sought a 

quantitative explanation for why actual market prices so often diverge from the expected 

equilibrium prices (Fama, 1970). This article proposes an answer to this long-standing research 

question using an approach based on an application of perturbation theory and tests it against 

historical records.

Hayek’s mechanism posited that, while no single investor had enough knowledge to 

accurately predict a market price for a particular good or service, negotiations between buyers 

and sellers would collaboratively settle on an equilibrium market price that would accurately 

reflect its value. Subsequent scholars have endlessly debated models to explain markets’ obvious 

and consistent departures from the equilibrium price, known as excess volatility (Bouchard, 

2021; Fama, 1970; Turcaș et al., 2022; Shiller, 2003).

When, in the middle of the 20th century, Edward Lorenz (1963) revolutionized the study 

of non-linear dynamical systems by introducing chaos theory, economic theorists quickly began 

trying to apply it to explain the market-disequilibrium problem, but with so-far marginal results 

(Inglada-Perez, 2020; Turcaș et al., 2022).

Shiller (2003) suggested that, while EMH does appear to explain long-term trends in 

equities markets, the excess volatility “had its origins in human foibles and arbitrary feedback 

relations [emphasis added]” (p. 102). The study reported in this paper followed Shiller’s 

suggestion by positng that the excess volatility observed is, indeed, the result of a feedback 

mechanism acting on a chaotic assemblage of individual investors who act as both buyers and 

sellers in equities markets (Turcaș et al., 2022). This additional volatility acts as a perturbation 
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on the EMH-mediated market equilibrium operating as Hayek (1945) described (Weinberg, 

2021).

The next section describes a framework that incorporates a chaotic mechanism for 

perturbations to the EMH model. The third section steps back to review the literature on EMH, 

market dynamism and chaos theory. The fourth section describes methodology to test the model 

against historical market data. The fifth section describes the results obtained. The final section 

discusses the implications of those results and suggests further research to improve the 

framework.

Literature Review

This paper builds upon scholarly literature in two areas: efficiency of markets setting 

prices for equities and other valuable products and services, and chaos in large dynamical 

systems.

Market Efficiency and Equities Price Setting

The efficient market hypothesis (EMH) has three forms (Klock, & Bacon, 2014):

 Weak-form EMH refers specifically to predictions based on past-price information;

 Semi-strong form EMH includes use of all publicly available information;

 Strong-form EMH includes all information, including private, company-confidential 

information.

The framework proposed in this paper envisions market-price movements as chaotic fluctuations 

around an equilibrium value determined by strong-form market efficiency (Chauhan et al., 2014; 

Gleick, 2008).
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Stock-Market Dynamism

Once a stock is sold to the public, it can be traded between various investors at a strike 

price that is agreed upon ad hoc between buyers and sellers in a secondary market (Hayek, 

1945). When one investor decides to sell stock in a given company, it increases the supply of that 

stock for sale, exerting downward pressure on the strike price. Conversely, when an investor 

decides to buy that stock, it increases the demand, driving the strike price up. Interestingly, 

consummating the transaction decreases both supply and demand, and thus has no effect on the 

strike price. It is the intention to buy or sell the stock that affects the price. The market price is 

the strike price of the last transaction completed.

Successful firms grow in value over time, which is reflected in secular growth of the 

market price of their stocks (Fama, 1970). GDP growth reflects the overall growth of the value of 

successful companies that make up the national economy. Thus, EMH suggests that overall 

market value (measured by appropriately constituted market indices) should reflect GDP secular 

growth.

Of course, if all investors were assured the market price would rise, no owners would be 

willing to sell, no transactions could occur, and the market would collapse (Hayek, 1945). 

Similarly, if all investors were assured that the stock’s market price would fall, owners would be 

anxious to sell, but nobody would be willing to buy. Again, no transactions could occur, and the 

market would, again, collapse. Markets therefore actually work because of the dynamic tension 

created by uncertainty as to whether any given stock’s market price will rise or fall in the near 

future, making equities markets dynamical systems that move constantly.

Fama (1970) concluded that on time scales longer than a day, the EMH appeared to work. 

He found, however, evidence that on shorter time scales it was possible to use past-price 
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information to obtain returns in excess of market returns, violating even weak-form efficiency. 

He concluded, however, that returns available on such short time scales were insufficient to 

cover transaction costs, upholding weak-form EMH (Klock, & Bacon, 2014). Technological 

improvements since 1970 have, however, drastically reduced costs for high volumes of very-

short-timescale transactions, making high-frequency trading profitable (Baron et al., 2019).

Chaotic Dynamics in Large Systems

Such short-time predictability and long-time unpredictability is a case of sensitive 

dependence on initial conditions, which was discovered by Edward Lorentz in 1961 to be one of 

the hallmarks of chaos (Gleick, 2008). Since 1970, considerable work has been published 

applying the science of chaotic systems to markets, especially the forex market, which operates 

nearly identically to equities markets (Bhattacharya et al., 2017).

Chaos is a property of dynamical systems (Strogatz, 2018). To illustrate how a dynamic 

system can become oscillatory requires an easily understood example, such as the pitch-control 

system in an aircraft (Efremov et al., 1996). This system uses HIL negative-feedback control 

(Brogan, 1985) with two moving parts: the pilot and aircraft. In that system, the oscillation arises 

from a difference in the speed at which the aircraft reacts to control inputs, and the speed at 

which the pilot reacts to correct aircraft movements (Efremov et al., 1996). The pilot’s response 

typically lags the aircraft’s movement by a more-or-less fixed time. In such a case, there is 

always an oscillation frequency at which that time lag equals one half of the oscillation period 

(i.e., time to complete one cycle) causing the feedback’s effect to shift from negative to positive 

as indicated in Figure 2. The aircraft’s nose then bobs up and down at the oscillation frequency, 

giving the aircraft a porpoising motion. Should the pilot try to control the porpoising, the 

oscillation only grows larger because the response still lags the motion by the same amount, but 
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the gain of the system (output amplitude divided by input amplitude) increases with pilot effort 

to exert control. This is called pilot involved oscillation (PIO), and it is a major nuisance for all 

HIL feedback-control systems.

PIO relates to stock-market behavior because there is also a lag between market-price 

movement and any given investor’s reaction to set a price based on it (Baron et al.,  2019). The 

time lag between intention and consummation of a trade will necessarily represent half the period 

of some PIO-like oscillation. The fact that at any given time there are multiple investors (up to 

many thousands) driving market-price fluctuations at their own individual oscillation frequencies 

(determined by their individual execution-time lags) makes the overall market a chaotic system 

with many closely spaced oscillation frequencies superposed on each other (Gleick, 2008).

This oscillation creates the possibility that a sophisticated arbitrager may analyze the 

frequency spectrum of market fluctuations to find an oscillation pattern large enough (because it 

represents a large enough group of investors with sufficiently similar time lags making a 

significant enough volume of trades) and persistent enough to provide an opportunity for above-

market returns using a contrarian strategy (Klock & Bacon, 2014). Of course, applying the 

contrarian strategy tends to damp the oscillation. If enough investors apply it, the oscillation 

disappears, restoring weak-form efficiency.

Proposed Theoretical Framework

The framework suggested in this paper consists of an equilibrium market value set by 

economic factors and perturbed by Shiller’s (2003) feedback mechanism, which operates 

independently of economic forces. The equilibrium value follows Hayek’s (1945) price-setting 

mechanism operating under Fama’s (1970) strong EMH conditions (Klock, & Bacon, 2014). The 

feedback-mechanism model is a chaotic assemblage of phase-shift oscillators representing 
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innumerable large and small investors requiring different amounts of time (delays) to make 

investment decisions.

In this paper, an investor is an individual or group of individuals buying or selling 

equities in an open market based on their analysis of all relevant public information (Fama, 

1970). This analysis follows a cyclical decision-making process shown in Figure 1. The cycle 

starts at the top with observations of whatever external or internal data the investor considers 

relevant to the buy/hold/sell decision. The second step consists of qualitative and quantitative 

analysis of the gathered data. The third step draws a conclusion from that analysis, which results 

in a buy, hold, or sell decision. The final step executes that decision (usually through a broker) 

by finding a willing counterparty, negotiating a strike price, and completing a transfer of title to 

the asset. Finally, the cycle is closed by returning to the observation step to prepare for the next 

transaction. This process can be modeled as a human-in-the-loop (HIL) control system (Brogan, 

1985).
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Figure 1

The cyclical investor decision-making process requires a finite but unspecified amount of time.

Figure 2 shows the basic buy low, sell high investment strategy (Watari et al., 2022). The 

strategy assumes that equities prices generally move up and down (depicted in Figure 2 as a sine 

wave). The strategy motivates investors to decide to sell when the market price is high and to 

buy when it is low, and to hold during transition periods.

What is significant for the suggested framework is that the investment cycle in Figure 1 

takes time. The amount of time to complete the cycle is highly variable. This cycle time inserts a 

delay (δ) into the decision process between the initial observation step and the final execution 

step characterizing the behavior of each investor. This delay makes the HIL feedback control 

system oscillate at a frequency equal to 1/2δ (Efremov et al., 1996).
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Figure 2

The basic buy-low, sell-high investment strategy.

The proposed framework models an equities market as an assemblage of a large number 

of investors, each modeled as a phase-shift HIL oscillator with a characteristic delay time and 

frequency. Signals from multiple investors having the same (or closely similar) delay times 

combine to increase the overall signal amplitude at that frequency.

Methodology

Perturbation methods divide a problem into an easily solvable equilibrium component 

and a perturbation component as shown in equation 1 (Weinberg, 2021):

(1)

where U0(t) is the easily solvable equilibrium component and U’(t) is a perturbing component. 

The framework assumes that the perturbation is a Taylor series of the form

(2)

where ε is an amplitude coefficient, and the φn are functions to be determined by governing 

equations (Strogatz, 2018). Generally in perturbation analysis it is hoped that the first one or two 
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terms in the series contain all of the useful information about the system being modeled, but this 

is not a requirement. The framework allows an unspecified number of components.

For the framework presented here, the problem being modeled is behavior of equity-

market prices, specifically the Dow Jones Industrial Average (DJIA), which represents a 

portfolio of thirty prominent companies listed on U.S. stock exchanges (Turcaș et al., 2022). This 

study used the DJIA because it has a long, unbroken record reaching back to the late 19th 

century. Specifically, the study used data from the relatively quiet period from the end of the 

Great Depression (29 April 1932) to just before the disturbance caused by the COVID-19 

epidemic (31 December 2019) (Amadeo, 2021).

Equilibrium Component

Strong-form EMH posits that equities market prices reflect current net-present values of 

future earnings of the companies they represent. The framework assumes that the equilibrium 

component of the market-price function has the same form as the time evolution of the value of 

the underlying asset. In the case of the DJIA, the underlying asset is the net present value of the 

companies in the index, which, in turn, represent the value of the underlying U.S. economy.

Real GDP

The framework  assumes that economic development as measured by gross domestic 

product (GDP) generally follows a growth function of the form

(3)

where U(t) is the GDP at time t, αn is a coefficient for the growth term n, and βn is a coefficient to 

normalize time. The general form is thus a polynomial whose terms are exponentials. The zero-

order term (n = 0) provides no growth (i.e., a constant GDP). The first order (n=1) term provides 
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exponential growth with a constant growth rate.  If βn for a given term is negative, the 

contribution for that term is negative and the GDP shrinks.

This provided the first hypothesis for the study:

 H1 U.S. GDP growth took the form of an increasing exponential function during the 

period of interest.

The null form of this hypothesis is:

 H10 U.S. GDP did not grow at a constant rate during the period of interest.

The test for hypothesis H1 is to fit an increasing exponential function of the form shown 

in equation 4 to the DJIA longitudinal record:

(4)

where α is the value of the function at the starting time t = 0, and β is the growth rate normalized 

for the observation interval.

EMH and Economic Development Trend

As described above, EMH suggests that the DJIA time series should have the same form 

as the GDP time series. This provided a second hypothesis:

 H2 The historical DJIA equilibrium price behavior showed the same functional form as 

time-series behavior of the U.S. GDP.

It’s null version is:

 H20 The DJIA equilibrium price behavior did not match the functional form of the GDP 

time-series.

Excess Volatility

Prior researchers have established that DJIA closing prices present frequent and 

significant deviations from the equilibrium prices suggested by the EMH model (Bouchard, 
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2021). The framework posits that these deviations act like signals from oscillators representing 

actions of a large, chaotic assemblage of investors operating with different reaction-time delays. 

This provided the third hypothesis:

 H3 DJIA closing-price excess volatility has the functional form of a large chaotic 

assemblage of oscillators operating over a wide range of frequencies.

Its null version is:

 H30 DJIA closing-price excess volatility departs significantly from the functional form of 

signals from a large chaotic assemblage of oscillators.

Substituting an excess-volatility variable V(t)  for U’(t) in equation 1 and solving or it 

shows the perturbation term to be equal to the DJIA data minus the exponential growth model:

(5)

where V(t) is the excess volatility and D(t) is the historical DJIA closing price at time t.

Discrete Fourier Transform

The framework predicts that the excess volatility in equation 5 will have the form of a 

superposition of sinusoidal oscillations whose frequencies will depend on the time delays (δm) 

individual investors require to make investment decisions and whose amplitudes will depend on 

the number and appetite of investors at each δm value:

(6)

where Am is the amplitude of the oscillation at the frequency fm = 1/2δm.

The appropriate technique to analyze signals of this type is the discrete Fourier transform, 

which spreads a time-series of observations into a spectrum representing the complex amplitude 

of signals within evenly spaced frequency intervals (Stone, 2021). Using Pythagoras’ theorem at 
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each mth frequency yields the power carried by that oscillation as Am
2. This power spectrum can 

yield insights into the mechanisms driving the process generating the signal.

A general property of chaotic oscillations is that their power spectra typically follow 

Zipf’s Law (Kohyama, 1984). This ensures the fractal self-similarity property of a chaotic time 

series, and provides a fourth hypothesis to confirm H3:

 H4 The power spectrum of excess-volatility oscillations follows Zipf’s Law.

The null version of this hypothesis is:

 H40 The power spectrum of excess volatility oscillations does not follow Zipf’s Law.

The appropriate test for confirming Zipf’s Law is to perform linear regression analysis on 

a log-log scatter plot of the power spectrum (Strogatz, 2019).

Results

The analysis for this paper was carried out using two scripts written using the scripting 

language Matlab. The first script tested H1 by fitting a single exponential growth function to 

historical annual U.S. GDP data from 1932 (after the market recovered from the Great 

Depression) through 2019 (before the effects of the COVID-19 pandemic were felt in the U.S.) 

(Amadeo, 2021). The second script tested H2 by performing similar analysis on historical daily 

closing DJIA data from 29 August 1932 through 31 December 2019. The second script 

continued on to test H3 by analyzing the residuals of the exponential regression of DJIA data 

using Fourier transform methods. Finally, the second script tested H4 by performing linear 

regression on log(A2) versus log(f).

GDP Model

The test for hypothesis H1 consisted of fitting a one-term exponential regression function 

to historical GDP data. The data shown in Figure 3 consist of an exponential growth model fitted 
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to annual real U.S. GDP data from 1932 through 2019 (Amadeo, 2021). Except for minor 

deviations, the GDP data match the first order exponential model (α =  1.195e-24, β = 0.02878) 

quite well (Pearson’s R2 = 0.978). This confirms the hypothesis, so the framework may use an 

increasing exponential growth model with n = 1 as the EMH-equilibrium component.

Figure 3

Exponential growth function fitted to historical GDP data.

NOTE: From data compiled by the Bureau of Economic Statistics.

Matching GDP and DJIA Trends

Figure 4 shows an increasing exponential model (solid line) fitted to historic DJIA 

closing values. The model parameters are α = 0.258 (95% boundaries being 0.2165 and 0.2994), 

β = 0.04876 (95% boundaries being 0.04682 and 0.0507) and Pearson’s R2 = 0.9855. This result 

confirms hypothesis H2: DJIA equilibrium closing prices follow the GDP exponential growth 

curve.
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Figure 4

Exponential growth function fitted to DJIA closing values.

Residuals Power Spectrum

Figure 5 shows normalized residuals from subtracting the equilibrium price model from 

the actual data per equation 5, and normalizing by dividing the difference by the equilibrium 

price model evaluated at the same time. Note that the time-series shows small-amplitude 

oscillations at high frequencies superposed on larger-amplitude oscillations at lower frequencies 

(longer periods). This is characteristic of time series having a Zipf’s Law power spectrum 

(Ectors et al., 2019). These normalized residuals have an RMS value (standard deviation) of 

0.3325, or approximately one third of the concommitant equilibrium market price.

Figure 5

Normalized residuals from fitting the equilibrium model to historical DJIA data.
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Figure 6 shows the results of discrete Fourier analysis of these residuals (Stone, 2021). 

Oscillation power levels range over 11 orders of magnitude and frequencies range over four 

orders of magnitude, necessitating a scatter plot on log-log axes to display the result. Figure 6 

also includes a regression line fitted to the power spectrum showing Zipf's Law (inverse 

exponential) behavior and confirming H3 and H4. The regression model has a slope of -1.832 

(95% confidence limits -1.855 to -1.808) and an intercept of 15.76 (95% confidence limits of 

15.56 and 15.96) with R2 = 0.6684. Taking the logarithm of both independent and dependent 

variables gives the model equation 7:

(7)

where P(f) is the spectral power. This Zipf’s Law behavior is a characteristic of chaotic fractal 

time series signals that exhibit self-similarity with a similarity dimension equal to the Zipf’s Law 

exponent for the system (Strogatz, 2018).

Figure 6

Residuals power spectrum shows Zipf's Law behavior.
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Conclusion

This paper presented a framework for understanding the market-price activity of goods 

and services in public markets that explains the appearance of excess volatility invariably 

observed in those markets. The framework posited that prices are the sum of an equilibrium price 

reflecting the present value of the underlying good(s) or service(s) modified by a perturbation 

term dependent on non-economic factors reflecting negotiations between buyers and sellers. This 

framework led to four alternate hypotheses:

H1 U.S. GDP growth took the form of an increasing exponential function during the period 

of interest.

H2 The historical DJIA equilibrium price behavior showed the same functional form as time-

series behavior of the U.S. GDP.

H3 DJIA closing-price excess volatility has the functional form of a large chaotic assemblage 

of oscillators operating over a wide range of frequencies.

H4 The power spectrum of excess-volatility oscillations follows Zipf’s Law.
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 The paper tested these hypotheses against public-record historical data for DJIA closing 

prices and real GDP for the United States amassed during the period between the end of the 

Great Depression and the start of the COVID-19 pandemic in the United States. This period was 

chosen because it was relatively free from major financial disruptions, and so provided a benign 

test environment.

H1 and H2: U.S. GDP Growth and Expected Equilibrium Values

Results of comparing real GDP data to framework predictions found good agreement 

with hypothesis H1 for the period. The GDP matched an increasing exponential regression 

model. Furthermore, residuals of comparing the DJIA closing values to a similar increasing-

exponential regression model (ie., excess volatility) showed homoscedasticity.

The framework posited that negotiation between buyers and sellers can be modeled as a 

control system seeking the equilibrium price of the underlying asset’s value through consensus. 

As such negotiations always involve a time delay between an intention to transfer title to the 

underlying asset and consummating the transaction, in active markets the control system can 

(and usually does) oscillate at a frequency whose period equals twice the negotiation delay. In 

large, active markets with many participants the framework suggests that the perturbation term 

can be modeled as a chaotic assemblage of oscillators representing investors operating with 

different time delays. The resulting power spectrum is expected to follow Zipf’s Law.

The study began by using U.S. GDP growth during the period of interest as a proxy for 

the equilibrium value of DJIA assets. A single-term exponential growth model was fitted to 

historical GDP data and found to explain 97.8% of the data during the period. Based on that 

result, the study fitted a similar increasing exponential growth model to the DJIA daily-closing 
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values in the period, and found close agreement (Pearson’s R2 = 0.9855), which confirmed the 

equilibrium-price term in the framework.

The study then used Fourier analysis to compute the power spectrum of normalized 

residuals from fitting the exponential-growth model to DJIA data. The normalized residuals 

showed a 0.3325 standard deviation, meaning that the deviations generally amounted to one third 

of the estimated equilibrium value at each point in the time series. The power spectrum agreed 

with a Zipf’s Law model, exhibiting a self-similar fractal form with a similarity dimension of -

1.822 (Strogatz, 2018).

The study reported here had several limitations. Most obviously, it included only analysis 

of daily closing DJIA data. There are multiple other indices (e.g., S&P 500, NASDAQ, etc.) to 

which the framework should apply equally well. Additional research is needed to test the 

framework against these indices and against similar non-equities markets.

The methodology used in this study assumed many tens of thousands of investors in the 

market. One might ask how the results would differ when the market analyzed has fewer 

participants.

The fact that the data set included only daily closing prices limited the discrete Fourier 

analysis to frequencies below one-half cycle per day (Stone, 2021). Similarly, the use of a time 

series 87 years long made the analysis insensitive to frequency components lower than 1.15 

cycles per century. The analysis could be extended to higher frequencies by incorporating 

intraday data. Extending the analysis to lower frequencies would require examining a longer time 

period.

Using longer time series would require a methodology more able to deal with significant 

perturbations at short time scales, such as the COVID-19 pandemic, which may last only a few 
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years, or to decade-scale disruptions like the Great Depression. Wavelet analysis, which 

specifically searches for time-limited disturbances in time-series data, could prove helpful for 

this research (Vahid et al., 2022). Ultimately, the research reported here should be viewed as an 

important first step in understanding deviations from EMH.
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